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Thin films can be effectively described by the lubrication approximation, in which the equation of
motion is h,+(h"h,,, ), =0. Here h is a necessarily positive quantity which represents the height or
thickness of the film. Different values of n, especially 1, 2, and 3 correspond to different physical situa-
tions. This equation permits solutions in the form of traveling disturbances with a fixed form. If u is the

propagation velocity, the resulting equation for the disturbance is uh, =(h"h,,,),.

Here, quantitative

and qualitative solutions to the equation are presented. The study has been limited to the intervals in x
where the solutions are positive. It is found that transitions between different qualitative behaviors
occur at n =3, 2, %, and % For example, if u is not zero, solitonlike solutions defined on a finite interval

are only possible for n <3. More specific results can be obtained. In the case in which the velocity is
zero, solitons occur for n <2. For n =1, the region % < n is characterized by the presence of advancing-

front solutions, with support on (— «,¢). For n> %, single-minimum solutions diverging at * oo are

possible. The generic solution, present for all positive values of n, is a receding front, which diverges at

finite x for n <O0.

PACS number(s): 47.15.Hg, 47.55.Dz

I. INTRODUCTION

In a series of recent papers [1-4,6] the motion of a thin
film of height A has been studied in a one-dimensional
geometry so that # depends on one space variable x and
the time ¢. The resulting dynamics is modeled by the
equation

h,+(h"h,. ), =0, x,tER, (1)

in which 4 is required to be positive. Equation (1) arises
in several fluid dynamics problems in which inertia is
negligible and the dynamics is governed by the presence
of viscosity and capillarity forces. In the Hele-Shaw cell
[1], the liquid present in a fluid droplet is sucked in such
a way as to produce a long thin bridge between two
masses of fluids. Under appropriate conditions, the
geometry of this problem can be approximated as one di-
mensional and Eq. (1), for n =1, with A the thickness of
the bridge, will describe the dynamics of the process. In
the spreading of a droplet over a solid surface under the
effect of viscosity and capillarity, again the same equa-
tion, this time with the parameter n set equal to three, is
the one that governs the dynamics [4]. Variations on the
same problem are obtained by playing with the boundary
conditions at the interface solid fluid. The reason for this
is that n =3, which corresponds to no-slip boundary con-
ditions, would lead to infinite viscous dissipation [5].
Typically n =2, corresponding to a boundary layer of
fixed thickness, and n =1, corresponding to a thickness
I ~1/h, are the two cases that are considered for 4 —0;
the case n=1 in particular arises when considering a
drop on a porous surface [6].

The main difficulty in studying Eq. (1) is its singular
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behavior for 4 =0. One outstanding question is whether
zeros develop in finite time starting with a regular initial
condition. What is known is that with periodic boundary
conditions, for n > 3.5 this does not occur [7], while for
n <3 the solution develops zeros in a finite time [3]. One
way of looking at the problem has been to study similari-
ty solutions to (1). Bernis, Peletier, and Williams [8] have
considered  similarity  solutions in the form
h(x,t)=t “H(xt ™ %). In this paper we concentrate on
solutions which are waves of fixed form traveling to the
right,

h(t,x)=H(n(t,x)), n=x—ut . (2)

With this restriction, Eq. (1) may be integrated in the
form

H'H,, =uH+J . (3)

Here, J has the physical significance of a current and u is
the propagation velocity of the solution. In this paper we
focus on the case in which J and u have the same sign
and upon regions in which H is greater than zero. In the
next section, we see that under these assumptions, we can
get a quite complete classification of the possible forms of
the H—mn curves. This section also contains a local
analysis which gives a classification of power-law singu-
larities in H(7). Section III of this paper treats situations
in which either J or u is zero. In these situations one can
reduce the equation for H to a pair of first-order equa-
tions for the slope and the curvature of H(7n). Section IV
describes flows in the slope-curvature plane for this situa-
tion. We show that the local analysis exhausts the possi-
ble singularities of H(7) and define the possible behaviors
as a function of n. Finally, the last section returns to the
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case in which both J and u are nonzero, and describes the
types of solutions which are possible in this more general
case.

II. ANALYSIS OF H VERSUS 7 SINGULARITIES

Let us assume that # and J are both non-negative. We
assume that H is greater than or equal to zero throughout
the region of interest. In addition, we take n greater than
zero, and consequently H can have only zeros, not
infinities, for finite values of 7.

Under these assumptions, the qualitative structure of
the solution is very simple. Because H,,, must be posi-
tive then H,, can only have at most one zero in the inte-
rior of the solution region and is a monotone increasing
function of 7. It follows that H can have at most two ex-
trema in the interior of the solution region. The two pos-
sible extrema are a maximum for smaller 7 followed by a
relative minimum for larger 7. Alternatively, there may
be one or no extrema. Notice that as one proceeds to the
right of any minimum in H, the slope and curvature will
both grow. Consequently, to the right of any minimum,
we must have H going to infinity. Correspondingly, to
the left of any maximum one must have H going to zero,
and necessarily at a finite value of 1. Also, notice that if
H goes to zero as 17 becomes infinite, then H will be zero
(which is permitted) or negative (forbidden) everywhere.
Hence, under the stated conditions, all nonzero solutions
to Eq. (3) take one of the following forms.

Soliton. A solution in which H is nonzero in a finite in-
terval as shown in Fig. 1(a). This solution can only have
a single maximum and no other extrema. For later refer-
ence we divide the curve into two regions, each with a
specified sign of the slope. These are denoted as s, and
5q-

Advancing. A solution like that shown in Fig. 1(b).

H \H
S S5
a
(a) n (b) n
AH
<1
AL /
(d) n
(e) n

FIG. 1. The types of H versus 7 curves which arise for
r> —3. (a) shows a soliton solution, (b) an advancing solution,
(c) global ones, (d) retreating pattern, (e) an inflection solution,
and (f) a solution which touches down and then arises again.
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The word “advancing” is used because the fluid advances
into the dry region. Such an advancing solution must
have H going to infinity as 1 decreases toward minus
infinity.

Global. A solution in which H is positive for all . In
one case, it has a single minimum and diverges at both
plus and minus infinity as depicted in Fig. 1(c). There are
two types of global solution, one with a minimum, labeled
g, and g,, the other of which goes to zero at 1 equal to
minus infinity.

Receding. Solutions like those shown in Fig. 1(d) are
also possible. These two kinds of solutions have, respec-
tively, no extrema, or two extrema.

Inflection. Intermediate between the two solution
types of Fig. 1(d). This is a solution with one inflection
point and no other extrema, as depicted in Fig. 1(e). This
serves as a separatrix and is unstable against changes in
parameters.

Touchdown. Another unstable separatrix is a curve
which just touches down at H =0 and rises again.

There are two cases in which we can obtain full infor-
mation about solutions to Eq. (3). These are situations in
which one of the two terms on the right-hand side of Eq.
(3) vanish. Then, this equation reduces to

H»'H, =1 @

after a rescaling. These cases differ in their values of p.
If J=0 or if J is much smaller than uH, then

p=n/3 for J=0. (5a)

In the second situation, which is the generic situation as
H goes to zero, the height term is negligible and the
current term dominates in the right-hand side of Eq. (3).
After a change of scale in 1), the equation can be reduced
to the form (4) with

p=(n+1)/3 for u=0. (5b)

Our job is to delineate which forms of H versus n curves
are possible and generic in different regions of p. Howev-
er, this problem has a more symmetrical solution when
the answer is expressed in terms of the alternative param-
eter r which is related to p by

r=4p—3. (6)

Equation (4) has an exact solution for the two cases p=1
and O corresponding, respectively, to r=—32 and —3. In
those cases one has the explicit solutions

He 173/6+a')72+b77+c , r=—3 (7a)
aem+b cos(V3n/2+cle "2, r=-3. (Tb)
For r= —% one has a cubic curve which can have soli-

tonlike form, and receding fronts of both types and an
inflection solution like that shown in Fig. 1(e). There are
no advancing fronts and no global solutions. For r=—3,
a global solution in which H goes to zero on the left also
becomes possible. [Take a to be positive and b =0 in Eq.
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(7b).] This global solution and the inflection solution
[which appears in both (7a) and (7b)] are unstable in that
a small change in parameters can completely destroy the
solution or change its character. The remaining solution
types in Eq. (7) are stable against all small changes of pa-
rameters.

We shall be interested in the character of the zeros and
infinities of H, since the nature of these singularities will
determine much of the character of the time dependence
emerging from Eq. (1) [3]. In particular, a matching of
powers implies that there are three possible forms of
zeros or infinities of H. The three cases are that, for 7
going to zero or infinity, we can have solutions in the
form:

aln|'’? (N) (8a)
H=lan+by*% (L) (8b)
an2+b7]5‘6p (Q) A (80)

Here, L and Q stand for linear and quadratic while N de-
scribes a situation in which the power is generically a
noninteger. [In the N case, Eq. (8a) gives an exact solu-
tion when a is correctly chosen.] For Eq. (8a), the condi-
tion that @ must be positive determines the sign of . For
the N solution to be positive, we must have r in the range

(N) >0 (9a)
(N) n<0. (9b)

—3<r<—lorr>1,
r<—3or —1<r<i,

The L and Q solutions are obtained as an asymptotic ex-
pansion in 7. In Eq. (8) the first term on the right of the
equal sign is the leading-order result, with the next term
being a small correction. Then, these expansions give
zeros or infinities of H according to the rule

r<l=H->0, r>1=H-—>w, (L) (10a)
r<—1=—H->0, r>—1=—H-—>x, (Q). (10b)
Thus, for example, the » = —3 case, with the solution

given in Eq. (7a), always has H going to infinity via the N
solution which then implies that the infinity only occurs
when 7 goes to positive infinity. Thus, the demands of
Eq. (9) are satisfied. Equations (10) are also fulfilled since
both linear and quadratic zeros may occur but not linear
or quadratic infinities.

The remaining cases are the boundary cases in which
r=—3, r=—1, or r=1. The first case is described by
Eq. (7b). In the second case, the quadratic and the N
singularities merge while in the third the linear and N-
type singularities merge. These latter two cases give new
singularity types:

InH ~21np+2/3 In|lny|+ - - -

for n—>—+ow orn 0, (NQ)r=—1 (11a)
InH =~In|n|+1/31In|ln|y||+ - - -
for n—>—o or N0, (NL)r=1. (11b)

Equations (8)—(11) describe how zeros and infinities
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may occur in H via behaviors which asymptote to simple
power laws. More complex behaviors are possible in
which it is proportional to a power but also has some os-
cillatory structure in it. We shall have more to say about
these behaviors in the next section in which we replace
the equation for H by a pair of first-order ordinary
differential equations for the slope S and the curvature, C
of H(m). In this representation these ‘“‘oscillatory” singu-
larities will correspond to limit cycles in the C-S plane.
After a bit of analysis, we shall argue that the limit cycles
do not exist so that Egs. (8)-(11) exhaust the possible
singularities in H (7).

III. MAIN FEATURES OF THE C-S PLANE

We can do a much more general analysis of Eq. (4).
First notice that (4) is invariant under the rescaling

H—>aH , n—aPy. (12)

From any solution to (4) we can get another solution by
doing a rescaling in the form given by Eq. (12). Another
way of generating a new solution is the displacement of 7
by a fixed amount. When these invariances are taken into
account, the solutions of Eq. (4) become a one-parameter
family of essentially different solutions.

There is a standard device for making use of invari-
ances like these. Whenever the independent variable does
not appear in the set of equations one can lower the order
of the differential equation by expressing it as an equation
for the derivative of the independent variable in terms of
the independent variable itself [9]. Here, we use the fol-
lowing change of variables, which both lowers the order
of the equation and eliminates any explicit dependence
upon the new independent variable InH:

d S d

=gpr1 = . 1
S(H)=H?"'H, , dn  H? dInH (13)
Equation (4) then becomes the second-order equation
S[SS"+(p—1)(2p —1)S?+(3—4p)SS'+8?]=1;
,__ dS
JIndH (14)

Here and below we use primes to denote derivates with
respect to InH. We could at this point change variables
to lower the order once again. Instead, we choose to use
the change of variables to obtain a first-order auto-
nomous system for a pair of variables S and a new vari-
able related to the curvature

s _H,,H
C(S)=—= +p—1. 15
(S) S : p (1)

Thus, we can replace Eq. (13) by the pair of statements:
C'=V(C,S)=(1/83)—2C*+rC+(1—r?)/8,  (16a)
S'=Vg(C,S)=CS . (16b)

In this way, the irrelevant integration constant associated
with the similarity property (12) is reabsorbed through
the use of logarithmic variables, changing the problem to
that of analyzing a pair of first-order nonlinear ordinary
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differential equation.

The kind of analysis that will be carried on here will
consist of studying the trajectories in the C-S plane of
solutions to Eq. (16), and then in understanding the result
in terms of H-7 variables. In this section we will analyze
the asymptotic behavior of solutions of Eq. (4). In the
following section we will focus on building up a
correspondence between qualitative features of trajec-
tories in the C-S and in the H-7 plane.

Notice that Eq. (16) shows a symmetry between the
positive and negative domains of 7, specifically, (16) is in-
variant under the replacements: r — —r, C— — C (corre-
sponding to replacing H with 1/H). Therefore, any
analysis we carry out for positive » can be extended im-
mediately to negative r.

Our first step is to locate all the singularities and other
significant features of H versus 7 in terms of flows in the
C-S plane. The behaviors described in Egs. (8) and (11)
show routes by which H can go to zero or infinity.
Indeed, inverting Eq. (13) we obtain

H(S)=H(S, )exp fssg,dc‘f—s,)
0

This last equation shows that H—0 and H — o at finite
S when SC(S)—0, which corresponds to the fixed point
of Egs. (16a) and (16b),

(C,8)=[0,2(1—r2)"'3 (N). (17a)

As indicated this fixed point corresponds to H going to
zero or infinity via the N route of Eq. (8a). The second
possibility is that S—> oo along a trajectory in the C-S
plane. In this case, the term (1/5%) in Eq. (16a) can be
neglected. If one traces back the origin in this term, one
finds that it comes from the one in front of Eq. (4), so
that we are solving H olg m =0, which can have only
linear and quadratic solutions. From Eq. (16a),

(C,S)=[(r+1)/4 ,£](Q),
(C,S)=[(r—1)/4 ,£0 ] (L) .

(17b)
(17¢)

The sign of infinity gives the sign of the slope at the
singularity. We shall have to investigate the stability of
these “fixed points.” First, however, notice that the flow
can go to two additional boundary fixed points at S=0
(indicating zero slope) and C equal to plus or minus
infinity. These correspond to extrema of the H—ny
curves with the two types being

(17d)
(17e)

(C,S)=(—,0) (maximum) ,
(C,S)=(,0) (minimum) .

The maximum and minimum always form attractive
fixed points. The pair of fixed points Q and L have stabil-
ity properties which depend upon r. These fixed points
are at infinite S and at the C values

C.=(rtl1)/4. (18)

A linear stability analysis about these fixed points shows
that in the neighborhood of the fixed points
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C~_(ji"’H<T‘1 N
Ct

(19a)

S il~H (19b)

If both quantities on the right-hand side of (19) go to zero
as H approaches its limiting value, then the fixed point
will attract all trajectories in its vicinity. Thus, the col-
lection of orbits of this type cover a finite portion of the
entire space. These orbits are then said to have codimen-
sion zero. If the exponents have opposite sign, there will
be two lines of points attracted to the fixed point, but all
other orbits in the neighborhood will be repelled. Thus,
the fixed point will have one attractive and one repulsive
direction. This is a situation in which the orbits cover an
infinitesimal fraction of the entire space (sets of measure
zero), and in fact, have codimension one. Finally, if both
quantities go to infinity, then all possible deviations from
the fixed point will lead to trajectories which fail to reach
that point. This is a codimension two situation. Thus, if
r > —1 the quadratic fixed point will be attractive as H
goes to infinity. We have already seen that it does not ex-
ist for H going to zero. If r < —1 the fixed point will de-
scribe a zero with one attractive and one repulsive direc-
tion. Conversely, the linear fixed point will be an attrac-
tive zero for r <1 and will have an infinity with attractive
and repulsive directions for » > 1.

The qualitative behavior of the N-type fixed point are
only slightly more complex. A linear analysis about the
fixed points shows that the deviation for the fixed point
grows as H? where the power takes on the values

3 2 JI/Z
—r

3 (20)

This indicates that the fixed point has attractive and
repulsive directions for > < 1. In this situation, the orbit
is of codimension 1. For » < —1 this fixed point is attrac-
tive as H goes to infinity and is repulsive (codimension 2)
for H going to zero. The converse behavior holds for
r>1. However, at r>=3 there is a change in behavior
because the eigenvalue becomes complex. When
1<r?<3 the eigenvalues of the stability matrix are real
and all orbits flow directly into the fixed point. When
r2> 3 the orbits spiral and are either of codimension zero
or two.

IV. FLOWS IN THE tanhC —tanhS PLANE

All the remaining qualitative features of solutions to
Eq. (16) can be obtained by looking at the sign of C’ and
S’ to see the directions of flow C-S plane. In order to fit
all regions onto the picture, we actually use the
tanhC —tanhS plane. The regions in which the ratio

cosh?S 1 Ac—=cic—cCc.)
cosh?’C | cs* CcS

(tanhC)" _

(tanhS')’

2n

are positive or negative are drawn out in Fig. 2 for a par-
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FIG. 2. The regions of different behavior in the
tanhC —tanhS plane. The signs show whether the C(S) curves
have a positive or negative slope. The dashed lines have slope
zero, the solid ones slope infinity. The different kinds of fixed
points are labeled and described. This figure describes the situa-
tion when —1<r<1.

ticular case in which —1 <r < 1. The plus signs indicate
positive regions, the minus signs indicate negative re-
gions, the light lines zeros of the ratio, and the heavy
lines infinities. The lines intersect at the fixed points dis-
cussed above. The N fixed point is given by Eq. (16a).
Note that C’ is zero at

S(C)=2[(C—C NC—C_)]" 3. (22)

Here, C. are the values of C at the two fixed points Q
and L. These fixed points are also drawn in Fig. 2. They
are labeled to show the behavior of H in their neighbor-
hood.

minimum

tanh C

maximum  pn s — o

FIG. 3. Orbits in the tanhC —tanhS plane. The heavy curves
are separatrices; the light ones generic orbits. The different
kinds of fixed orbits are labeled. The arrows show the direction
of flow when 7 is increasing. This figure describes the situation
when —1<r<1.
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Any trajectory C(S) must be an increasing function in
the sectors of the plane labeled by a + and a decreasing
one in those labeled by —. These trajectories never cross
the axis S =0 at finite C, since this would correspond to a
nonquadratic extremum, with H_.. =0 and H+0, which,
for p+0, is forbidden by Eq. (4).

Now we are in a position to draw out the trajectories in
this plane. This is done in Fig. 3. There is one feature in
Fig. 3 which is far from obvious. The question is the fol-
lowing: should we have included limit cycles in our draw-
ing of the possible trajectories? Any limit cycle will give
a singularity in H(7). Notice that most types of limit cy-
cles are impossible. No limit cycle can go across the line
at S=0 since we know that there may be no more than
two crossings of this line. Hence, we confine our con-
siderations to flows which stay on one side of that bound-
ary. To have a limit cycle, one must have a flow which is
topologically equivalent to the one shown in Fig. 4. This
configuration occurs only around the N fixed point, when
|r| > 1. Consequently, any limit cycle must encircle that
fixed point and stay completely within the right half-
plane.

To eliminate the possibility of these cycles we look
back at Eq. (16) which implies that all trajectories in the
C-S plane obey the orbit equation

nm

1—r?

2¢4
M=1+rs3c+—8~-—s3. (23)

1

2 dS
Imagine that we have a limit cycle. Integrate (23) about
that cycle to find

$ds sicr=o0. (24)

For r+0, Eq. (24) is quite impossible since C(S)dS will

_ minimum

maximum ., ¢ .

FIG. 4. Orbits in the tanhC—tanhS plane. The same as Fig.
3 except that these orbits are now drawn for the case in which
—V3<r<—1.
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FIG. 5. Spiral near the N fixed point for r < —V/ 3. Different
regions of the picture correspond to different regions of global
behavior: trajectories lying in the shaded region correspond to
retreating solutions with two local extrema, while those which
lie outside of it correspond to simple retreating solutions.

always be positive in any portion of the loop. [An exact
solution, see Eq. (26) below, eliminates the possibility of
loops for n=0.] Therefore we do not have any limit cy-
cle. The rest of the analysis of the flow is quite straight-
forward. Notice that the boundaries of the plane and the
S axis are automatically trajectories. We put arrows on
all trajectories to show the direction of increasing 1. The
sign of S, is the same as the sign of C. Therefore the tra-
jectories take the form shown schematically in Fig. 3.
We have distorted the region near the maximum and
minimum to show the connection among the different
trajectories. Actually, all trajectories in the neighbor-
hood of these points pass through the boundary fixed
points shown. The heavier trajectories shown serve as
separatrices and are exceptional. The lighter ones have
the same form as all the other trajectories in their neigh-
borhoods. All the lighter trajectories have the form
shown in the first four parts of Fig. 1. Separatrices of the
touchdown and inflection form also appear. The touch-
down separatrix passes through the N fixed point. At
this point, H osculates the 1 axis. The two curves labeled
G,-G, and A have not been described previously. They
are, respectively, global and advancing solutions. For
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FIG. 6. How the topology around the N fixed point could
lead, for |r|> 1, to the presence of a limit circle; plus and minus
signs correspond again to trajectory slopes. In order to exclude
this possibility, information about the precise form of the rela-
tion C=C(S) is required. For |r|<1, the slope signs are
switched, leading to hyperbolic trajectories.

this special advancing solution H osculates the 7 axis as
an N-type zero. For the exceptional global solution, H
goes to infinity but, since the infinity occurs at the N fixed
point, H goes to infinity more weakly than for any of the
other trajectories.

The results of Figs. 2 and 3 can be checked by consid-
ering a situation in which an exact solution for the trajec-
tories is possible. Take » =0, then Eq. (16) gives an equa-
tion for C(S) which is

S%(C2/2)=31—3—2(C2—1—;) 25)

which then has the general solution

z_i_ 2 u
- 16 3S2+F . (26)

The different trajectories are labeled by the constant of

TABLE 1. The orbit types for —1 <r <1.

Singularity Intermediate Singularity
at left behavior at right
H n type orbit H n type Codimension
0 finite L r © o Q 0
0 finite L Firars o 0 Q 0
0 finite L S182 0 finite L 0
© — o0 Q a 0 finite L 0
0 finite L tt; 0 finite N 1
© — o0 N t3 0 finite L 1
0 finite L iyiy o o Q 1
o — N a 0 finite N 2
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TABLE II. The orbit types for —3<r<—1.

Singularity Intermediate Singularity
at left behavior at right
H 7 type orbit H 7 type Codimension
0 finite L r © © N 0
0 finite L IS B o N 0
0 finite L 515, 0 finite L 0
0 finite L tt, 0 finite Q 1
0 finite Q 1y o0 o ) N 1
0 finite L iiy o0 o0 N 1
0 finite L r o0 o0 N 2
TABLE III. The orbit types for r=—1.
Singularity Intermediate Singularity
at left behavior at right
H n type orbit H n type Codimension
0 finite L r o o NQ 0
0 finite L Firars o o NQ 0
0 finite L 518, 0 finite L 0
0 finite L tt, 0 finite NQ 1
0 finite L i1i, © © NQ 1
TABLE IV. The orbit types for r > 1.
Singularity Intermediate Singularity
at left behavior at right
H n type orbit H n type- Codimension
0 finite N r o o Q 0
0 finite N FiFars o © Q 0
® —® Q 8182 ® ®© o 0
0 finite N r © © L 1
0 finite N iyi, o0 © Q 1
® —® L 8182 ® ® Qo 1
TABLE V. The orbit types for r =1.
Singularity Intermediate Singularity
at left behavior at right
H n type orbit H n type Codimension
0 finite NL r o o0 Q 0
0 finite NL rirars © © Q 0
© —® ) 8182 *® ® Qo Y
0 finite NL iyi, S 0 Q 1
®© —® NL 818> ® ® Qo 1
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TABLE VI. Generic singular behaviors for « >0 and J > 0.
All infinities occur at == . All zeros occur at finite 77. The
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TABLE VIII. Generic solutions for Ju <0.

L’s and Q’s permit zeros or infinities for both directions of in- c Solit G110t.>al Adzancmg R?ced1ng
crease of 7. However, for the N’s the zeros and infinities can ei- ase olttons solution ront ront
ther occur on the left or the right of the solution region, as n>2 No Yes Yes No
shown. 3<n<2 Yes Yes Yes Yes
3

Case Possible infinities Possible zeros n=y Yes No No Yes
n=2 Q N (on left)
3
$<n<2 Q L
O<n=2 N(np— o) L

integration u. The inflection curve has u =0 while 3
gives the trajectories which pass through the N fixed
point. Note that, as stated above, Eq. (26) does not per-
mit limit cycles.

We summarize the results of the analysis for —1<r <1
by presenting, in Table I, a listing of the different kinds of
orbits observed. The last column in the table gives the
codimension of the orbit, i.e., the number of boundary
conditions which must be precisely set in order to achieve
an orbit of the given kind.

The same kind of analysis can be applied in the other
regions of r. For example, for —V'3 <r < —1, the trajec-
tories in the plane take the form shown in Fig. 4. Once
again, the light curves are generic and the dark ones are
separatrices. The labels correspond exactly to the curves
listed in Fig. 1. When —3<r < —V'3, there is only a
change in detail. The N fixed point gains complex eigen-
values and thence becomes a spiral. Then in the neigh-
borhood of the fixed point, there is a complex pattern (see
Fig. 5) or orbits of type i, r, t, and r;. Thus, there is a
sensitivity to initial data in this region. A comparison
with the exact solution (7b) shows why this is reasonable.
In that case there are oscillations which die away as 7
goes to infinity. Nonetheless, it is the tiny remnant of
these oscillations which determine how a set of boundary
conditions in the region of large 1 will produce the ob-
served (and different) behaviors for smaller 7. Table II
lists the orbit types in this range of 7.

Figure 6 shows the behavior that arises in the bound-
ary case r = —1 in which the N and Q fixed points merge.
In this case, the touchdown curve loses its ¢; segment.
Otherwise, all the curves are of the types we have de-
scribed heretofore. The curve types are summarized in
Table III.

The analysis for the other cases is exactly the same as

TABLE VII. Generic solutions for Ju > 0.

Global Advancing Receding
Case Solitons solution front front
n=2 No Yes No Yes
i<n<2 Yes Yes Yes Yes
n<i Yes No No Yes

the one we have already given. We show in Table IV the
orbit types for r > 1. For r > V'3 the motion in the neigh-
borhood of the N fixed point once again shows a spiral
structure, so one has a kind of sensitive dependence upon
initial conditions. The case r =1 is described in Table V.
Here the N and L fixed points have merged so that orbit
structure is simplified.

V. CONCLUSIONS

In the general case, Eq. (3) shows that J and u are both
nonzero. Naturally, the J term will dominate the
behavior as H goes to zero while the u term will dominate
as h goes to infinity. If the signs of u and H are different
one term can work against the other, and a variety of new
phenomena might arise. However, if the signs are the
same, the analysis we have used up to now will describe
the general nature of the orbits. The only difference is
that one uses Eq. (5a) to estimate the p value for infinities
and Eq. (5b) to estimate the p value for zeros. Once
again, we keep to the case n >0. Using the results from
Tables I-V leads, therefore, to the generic behaviors in
the case u >0 and J >0 as cited in Table VI. The solu-
tions of type N become of type NL and NQ, respectively,
at n =3 and n =3. Changing the sign of u and J changes
the direction in 7 in which the corresponding singularity
occur. Although the analysis carried on in this paper
does not apply in the intermediate region in which both
terms on the right-hand side of Eq. (3) are of the same or-
der, the results from the table above allow to derive con-
clusions on which solutions are definitely not allowed in
the various ranges of n. In Tables VII and VIII, the
“yes” cases are allowed, provided one assumes that the
asymptotic behaviors can be matched freely. In the case
that u and J have the same sign, one obtains, therefore,
the results cited in Table VII. When u and J have oppo-
site sign, one finds instead the results cited in Table VIII.
However, the reader should notice that the “no”’ in Table
VIII is less definitive than the “no” in Table VII. If J and
u have apposite signs, limit cycles might occur and they
might give rise to new kinds of singularities.
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